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Abstract. An ice cloud chamber was developed at the Johannes Gutenberg University of Mainz for generating several thousand

data points for mass and sedimentation velocity measurements of ice crystals with sizes less than 150 µm. Ice nucleation was

initiated from a cloud of supercooled droplets by local cooling using a liquid nitrogen cold finger. Three-dimensional tracks of

ice crystals falling through the slightly supersaturated environment were obtained from the reconstruction of sequential holo-

graphic images, automated detection of the crystals in the hologram reconstructions, and particle tracking. Through collection5

of the crystals and investigation under a microscope before and after melting, crystal mass was determined as a function of

size. The experimentally obtained mass versus diameter (m(D)) power law relationship resulted in lower masses for small ice

crystals than from commonly adopted parameterizations. Thus, they did not support the currently accepted extrapolation of

relationships measured for larger crystal sizes. The relationship between Best (X) and Reynolds (Re) numbers for columnar

crystals was found to be X = 15.3Re1.2, which is in general agreement with literature parameterizations.10

1 Introduction

While the size distributions and number concentrations of ice crystals prevalent in different types of clouds throughout the

atmosphere are extensively investigated by airborne in-situ measurements and various remote sensing techniques, knowledge

of other microphysical properties of these ice particles remains much more elusive (Baumgardner et al., 2017). Thus, the

properties of interest are often parameterized to allow the description of important processes like radiative transfer or the15

evolution of clouds over time in weather and climate models. The ice water content (IWC) in clouds for example has been

the subject of several studies but is often difficult to determine accurately. Alternatively, if combined knowledge of the size

distribution of ice particles in a cloud and the mass of each individual crystal is available, the IWC can be inferred indirectly.

Cotton et al. (2013) described the ice particle mass using an effective density ρeff , defined as the mass of the particlem divided

by the volume of a sphere with diameter equal to the particle’s maximum diameter Dmax. Thus, a crystal’s mass is given as20

m(D) =
π

6
ρeffD

3
max. (1)
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ρeff is evidently lower than the density of bulk ice, as it accounts for the complex non-spherical shapes of pristine single

crystals and aggregates, as well as inclusions of air inside the crystals in the form of small voids or bubbles. Locatelli and

Hobbs (1974) and Mitchell et al. (1990), among others, studied ρeff through ground-based collection of ice crystals, focusing

on the direct analysis of individual crystals. Other studies (e.g. Heymsfield et al. (2010), Cotton et al. (2013)) made use of25

aircraft-based in-situ observations, deriving relationships between particle size distributions measured by optical array probes

and the IWC determined using other instruments. An alternative description of crystal mass can be given by expressions of the

generalized form m(D) = aDb, where a and b are empirically derived parameters and D is a representation of the crystal’s

dimension. With such a relationship, a dependency of ρeff on particle size is implied, an assumption that is also supported by

theoretical work (Westbrook, 2007).30

Another unresolved key parameter in cloud microphysics is the sedimentation velocity of ice crystals of sizes below 150 µm.

Understanding the transport of mass and particle numbers within clouds is essential for accurately modeling many atmospheric

processes, such as the formation of precipitation (Heymsfield et al., 2007) and transport and vertical redistribution processes

such as denitrification (Molleker et al., 2014). Generally, the terminal velocity of a falling particle is attained if the gravitational

force Fg is equal to the drag force FD acting on the particle. The drag force experienced by a falling particle can be expressed35

using a dimensionless drag coefficient Cd as follows:

Fd =
1
2
ρav

2ACd, (2)

with a crystal falling through air with density ρa with velocity v while the area of the crystal projected normal to the fall motion

is A. When equating Eq. (2) with the gravitational force Fg =mg, one obtains an expression for the sedimentation velocity as

v =

√(
2mg
ρaACd

)
. (3)40

In addition to A, the fall velocity evidently also depends (amongst others) on the mass m of the crystal, as well as Cd. The

latter is a function of the Reynolds number Re, which represents the ratio between inertial and viscous forces that govern a

particle’s motion through the air and can be written as

Re=
ρavD

η
, (4)

where η is the dynamic viscosity of air. The Best number X (Davies, 1945) has been frequently used to elegantly describe fall45

velocity as a function of the other relevant properties (m, A, D). It is defined as:

X = CdRe
2 =

ρa

η2

2mgD2

A
. (5)

As X itself is independent of the fall velocity v, relating it to the Reynolds number (which is a function of v, but independent

of all other particle properties) yields a representative estimation for the particle sedimentation velocity from m, D and A

(Heymsfield et al., 2010; Mitchell, 1996). This approach proves useful if all of these properties are known or characterizable50

through approximations and parameterizations.
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A different approach for this problem, which was initially described by Hubbard and Douglas (1993), has been adapted

by Westbrook (2007). It involves calculating the fall velocity of crystals from the Stokes solution for a falling object with

the hydrodynamic radius Rhyd. While Rhyd =R for spherical objects, a suitable description that accounts for the different

flow characteristics around the falling object is required for other crystal shapes. If Rhyd is known, the fall velocity v can be55

calculated as

v =
g

6πη
m

Rhyd
, (6)

which is valid for small Reynolds numbers (Re� 1, i.e. Rhyd / 10 µm) where the flow is dominated by viscous forces.

For both mass and fall velocity, the amount of usable data in the literature is particularly sparse for ice crystal sizes smaller

than 150 µm. Currently used parameterizations are often extrapolated from measurements of particles with significantly larger60

sizes and assumed to also be valid for those small particles. For ice crystal mass in particular, some studies assumed crystals

smaller than a certain threshold to have the same mass as a spherical object with the density of bulk ice. Hence, the present

study focuses on decreasing the uncertainties in the characterizations of ice crystals in the size range smaller than 150 µm

by creating a data set containing the properties of several thousand small ice particles. For this, automated object detection

techniques were developed and applied to images and holograms recorded by an experimental setup designed specifically for65

the purpose of investigating small cloud ice particles. In Sect. 2, the ice cloud chamber that was used for the generation and

analysis of the particles in a laboratory is described. Sect. 3 contains a description of the instrumentation and methods utilized

for the determination of ice crystal mass and fall velocity. The results obtained from the conducted experiments are discussed

in Sect. 4, and a summary and conclusion follow in Sect. 5.

2 Ice cloud chamber70

An ice cloud chamber (ICC) was developed for the measurement of ice crystal sedimentation velocity through particle tracking

in a three-dimensional volume, supplemented with the determination of particle mass through microscopic analysis of their

melting product. In the ICC (Fig. 1), which was placed in the walk-in cold room of the Mainz vertical wind tunnel laboratory,

locally-produced ice crystals in the size range smaller than 150 µm can be investigated. The main part of the ICC is constructed

inside the cold room and has a cylindrical shape spanning 3 m in height and 60 cm in diameter. Air circulation is induced by75

a fan in a secondary channel connecting the bottom of the chamber to the top (Label 2 in Fig. 1). In order to create a cloud

in the chamber volume, this circulation is supplied with droplets generated by an ultrasonic nebulizer (Label 1 in Fig. 1).

Once a sufficiently stable cloud has formed, the circulation is stopped, and ice particle nucleation is triggered at the top of the

chamber. A hollow copper protruding into the chamber (Label 3 in Fig. 1) is filled with liquid nitrogen, inducing temperatures

below 195 K, hence cold enough to trigger homogeneous freezing of the present droplets in the immediate vicinity of the rod.80

The newly formed crystals grow in the supersaturated environment maintained by the evaporation of liquid droplets while

sedimenting towards the bottom of the chamber. The measurement section is mounted to the lowest part of the chamber and

connected through an outlet. Particle fall velocity was measured by means of an in-house developed holographic instrument

3

https://doi.org/10.5194/acp-2020-339
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 1. Schematic (not to scale) of the ICC from a side view. Droplets are generated and introduced into the chamber from an ultrasonic

nebulizer (1) and mixed throughout the chamber through circulation created by a fan (2). After the desired cloud conditions are reached,

freezing can be triggered in the top region using a cold finger (3). The measurement section (4-7), where mass and fall velocity measurements

are conducted, is suspended below the chamber and ventilated with air from a cooling unit (8) to improve static stability.

(see Sect. 3.1) which is positioned in a way that aligns its optical path through two windows in both of the side walls of the

measurement section. A collector containing a microscope slide positioned in the center of a lid closed off the measurement85

section at the bottom. This collector was employed to catch the falling crystals for subsequent analysis using a digital camera

mounted on a microscope.
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3 Methodology

3.1 Sedimentation velocity

Figure 2 shows the in-house developed "Holographic Imaging and Velocimetry Instrument for Small Cloud Ice" (HIVIS) used90

for particle tracking in a sketch (a) and a photograph taken from the side (b). HIVIS is an implementation of the classic optical

setup for in-line holography (Silverman et al., 1964; Borrmann et al., 1993; Raupach et al., 2006) as applied to in-situ cloud

Figure 2. The HIVIS instrument used for holographic imaging. (a): Sketch of top-down view (sample volume in red), (b): photograph taken

from the side. (c): sample reconstructed images of ice crystals recorded by the HIVIS instrument.
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measurements. The instrument’s camera sensor is illuminated by an expanded and collimated beam emitted by a Nd:YAG laser

with a wavelength of 532 nm. The hologram plane created and utilized by this setup has an area of Asample = 6.2× 4.9 mm2.

Combined with the reconstruction depth of 4 mm, this leads to a sample volume of 4.86 cm3. The crystals falling through this95

sample volume create scattered waves which interfere with the remaining undisturbed part of the laser beam (reference wave).

The interference pattern (the hologram) is recorded by the camera, hence allowing the numerical reconstruction of an in-focus

image of the original particle (Fugal et al., 2004). The camera records about 53 frames per second, yielding at least 3 and up to

10 recordings of crystals during their passage through the sample volume where they fall with a typical velocity of 20 to 100

mm/s.100

3.1.1 Object detection

To prepare for the extraction of data from the recorded holograms, most of the background pattern and speckle noise created by

dirt on the optical surfaces between camera and laser were removed during preprocessing and reconstruction (Fugal et al., 2009;

Schlenczek, 2018). For this, a software filter was applied that divides every pixel’s intensity in the hologram recorded at time

t= t0 by a value that represents the median of intensities Īslice = 1
N

∑N/2
n=−N/2 I(t0 +n) of this pixel in a set of holograms105

recorded shortly before and after t0. The reconstruction for each hologram was then calculated following the convolution

method described in Fugal et al. (2004), resulting in a stack of 2D images with a spatial resolution of dz = 100 µm (with z

representing the spatial axis along the optical path of the laser) throughout the measurement section for each hologram. An

object detection algorithm was applied which determined the position of the detected objects in three dimensions and their

in-focus images through analysis of several image parameters deduced from both the intensity and phase reconstructions (see110

Sect. 5 in Fugal et al. (2009)).

A classification model based on decision trees was created and applied to filter out speckle noise from detections of actual

particles and to separate among different crystal habits. First, a training data set was generated by the operator classifying a

set of several hundred crystal images into one of the following different categories: artifact (disturbance in the reconstructed

image generated by noise), irregular, dendritic, columnar and plate-like. Next, different particle properties were calculated115

from the intensity and phase images of each detected object. These properties included simple shape parameters (e.g. axis

lengths of enclosing ellipse, total particle area), derived context information about amplitude and phase, and spatial position

(e.g. distance to image center) to account for image inhomogeneity. From this set of classification data, a decision tree was

created algorithmically in a way that splits the source set of classified objects into different subsets using a binary splitting

criterion that optimizes the split at each node (Breiman et al., 2017). This was done to infer the class membership of the entire120

data set from the training subset and the corresponding binarization patterns. The parameters of each object were investigated

following the tree from top to bottom, leading to an unambiguous path which lead to an endpoint representing a class. For

validation purposes, the automated classifier that was generated using this method was applied to a test set of detections and

compared to labels created by the operator, yielding an agreement of over 85%.

6

https://doi.org/10.5194/acp-2020-339
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 3. (a): Distribution of measured calibration sphere diameters before size corrections. (b): Fall velocity as a function of (size-corrected)

calibration sphere diameter for single calibration measurement fall tracks, quadratic fit as red dashed curve. The black curve shows the

velocity expected from Stokes’ law as a function of glass sphere diameter for ρg = 2500 kg m−3 with uncertainty as gray shading. The black

marker shows mean and standard deviations of the measurement data.

3.1.2 Particle tracking125

The sedimentation velocity of the falling particles has been determined by tracking their position throughout the three-

dimensional sample volume (in the vicinity of the area labeled "5b" in Fig. 1). For each ice crystal object with size D that

was detected in the hologram at t= t0, a position xpred in the hologram at t1 = t0 + ∆t is predicted using an estimated fall
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velocity vest calculated from the Stokes solution for a sphere with diameter D, following

v =
g

3πη
m

D
, (7)130

with η being the dynamic viscosity of air and m the crystal mass. If a crystal with similar properties (habit and size) was found

close to this predicted position, the actual velocity was calculated from the particle’s actual position at t1 and the time step ∆t.

Using a leniency distance L, crystals are accepted as part of the fall track if their position x1 lies within the region in space

defined by |xpred−x1| ≤ L. Crystals were tracked through up to 10 holograms this way, and a mean velocity was calculated

from each time step (see Sect. 4.3).135

Calibration glass beads were used to conduct reference measurements of particle size and fall velocity for the particle

tracking setup. "Dry Soda Lime Glass Microspheres" fabricated by Duke Standards (Fremont, CA, USA), the diameter of

which was given by the manufacturer to be 29.5± 1.0 µm, were recorded while passing through the sample volume. The

observed particle sizes, shown in Fig. 3a, showed that a sizing correction had to be applied to the determined particle sizes,

which is common for holographic particle imaging (Lu et al., 2012). The particle size given by the manufacturer was confirmed140

by measuring the beads under a microscope, as well as by applying the sizing method using a sign-matched filter proposed by

Lu et al. (2012) to the recorded holograms. Thus, all particle sizes determined using the approach described in Sect. 3.1.1 were

corrected by subtracting a bias of 3 µm. The velocities and corrected diameters determined for 245 calibration beads are shown

in Fig. 3b. The velocity calculated for spheres with a given diameter using Eq. (7) is plotted in black, with the uncertainty

from density and size deviations (∆ρg =± 100 kg m−3, ∆D = 2.5 µm) as gray shading. The measured values are found in145

the vicinity of the theoretical curve, thus confirming the validity of the method.

3.1.3 Fall streak analysis

In a validation experiment, the velocities measured with particle tracking were compared with measurements obtained with a

different, independent method. This approach used prolonged camera exposure to obtain a continuous recording of the moving

ice particles’ positions over an extended period of time. A fall streak effect with length sstr was created in the recorded images150

for each falling crystal (see Fig. 11a). The projection of the crystal’s mean velocity onto the focal plane was then calculated

via vfall = sstr/Texp, with the exposure time Texp. The inherent size of the ice crystals, which was in the order of 1% of sstr,

and thus negligible, was ignored in the streak length analysis. The vertical extent of each image was 24 mm. Combined with a

camera exposure time of Texp = 85 ms, the full length of fall streaks from crystals falling at up to 140 mm/s could be captured

in each recording. As the contrast between the bright streaks created by falling crystals and the dark background was strong, it155

was possible to use a thresholding method for the automation of streak length measurements, yielding a velocity distribution

for each recording. More detailed elaborations on the automated detection of objects in images using thresholding and other

techniques are given in Sect. 3.2 and the Supplement.
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Figure 4. Sample images of ice crystals collected on a microscope slide before and after melting. The automatically detected contours (from

k-means clustering segmentation (Pedregosa et al., 2011) in the crystal image and from Hough circle detection (Hough and Paul, 1962) in

the droplet image) are added in red. Contours which intersect the image frame borders are discarded.

3.1.4 Evaluation of residual turbulence

Various steps have been taken in order to suppress any source of turbulence in the fall section, because a calm environment160

is required to obtain meaningful and unbiased results for the conducted fall speed measurements. Thermal insulation of the

sample volume from the light sources required for fall speed measurements and air-tight sealing of the fall section relative to

the surrounding cold room were ensured. Further, an air flow from the cooling unit of the ICC directly past the measurement

section was created during the experimental process. This ventilation ensured that the fall section containing the measurement

region is the coldest area of the cloud chamber volume, creating a statically stable region within the velocimetry sample volume165

to inhibit any turbulence potentially disturbing the crystals’ falling motion. To verify that the remaining turbulence in the fall

section is negligible, test experiments were conducted in which the droplet motion within the sample volume was recorded

by a camera. The recorded video was then analyzed and, using tracking of individual droplets, the remaining drift velocity in

the improved setup were estimated. The velocity of the weak random turbulent motion of droplets was estimated to be around

5 mm s−1.170

3.2 Ice crystal mass

In order to relate the mass of individual ice crystals to a representative particle size, a microscopic imaging method was

used. The crystals moving through the fall section (see bottom region in Fig. 1) were collected underneath the chamber on

a glass slide treated with a hydrophobic silane. The glass slide was then extracted from the cloud chamber and its surface

was covered with a millimeter-thick layer of oil to prevent sublimation of ice. Next, the coated slide was viewed and scanned175

under the magnification of a microscope, yielding images of several crystals in each picture. To deduce size information from
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Binarization method |∆Dsec| |∆Dae|

Global Threshold 1.4 µm 1.2 µm

Adaptive Threshold 1.2 µm 1.7 µm

k-means clustering 1.1 µm 1.1 µm

Canny Edge Detection 1.5 µm 2.0 µm

Table 1. Mean error of ice crystal sizing relative to operator-labeled image for different binarization methods in a sample image. |∆Dsec|
for diameter of smallest enclosing circle, |∆Dae| for area equivalent diameter.

these microscope images, we have developed an automated image processing software which utilizes various object detection

approaches to accurately trace the crystal edge contours. In addition to global and local grayscale thresholding, Canny edge

detection (Canny, 1986) and k-means clustering (Pedregosa et al., 2011) were used to create several binarized representations

of each image. From these binary images, the contour tracing approach developed by Suzuki and Abe (1985) was used to create180

object contours from which characteristic size parameters were obtained. A more thorough elaboration on the segmentation

and contour tracing methods can be found in the Supplement.

The accuracy of the particle sizes obtained from the different binarization methods (see Table 1) was evaluated by creating

a reference sizing and determining the deviation between particle sizes obtained from the binarized particle representations

and the reference sizing. For this, the crystal edges in a sample image have been traced in zoomed-in views of the crystals185

by an operator. To compare the particle sizes obtained by these reference contours, two size parameters were evaluated: the

diameter of the smallest enclosing circle around a contour, Dsec, and the area-equivalent diameter, Dae. The sizing errors of

each segmentation method with respect to these parameters were determined by applying them on a sample image containing

12 single crystals (Table 1). Obviously, the sizing error introduced by all methods was smaller than 2 µm, whereas the machine

learning-based k-means clustering method provided the best agreement to the shapes determined by the operator. Similar190

results were observed for other images, with k-means yielding the most accurate results in most cases.

After completion of the crystal image acquisition, the microscope slide was exposed to a heating lamp, which let the ice

crystals melt within a few minutes. Subsequently, a second image containing the resulting melted drops was recorded and the

droplets’ diameters were determined using the circle Hough Transform (CHT) algorithm (Hough and Paul, 1962). Due to the

hydrophobic characteristics of the glass surface and the low density of the oil used for coating, the drops formed this way have195

an approximately spherical shape, allowing for a simple calculation of the water mass contained in each individual ice crystal

(Fig. 4b).

Special caution had to be exerted when interpreting drop image data, as the coagulation of multiple melting crystals into a

single drop had been observed on several occasions. To prevent this effect from creating a bias in measurement data, affected

mass-dimension pairs were removed after the automated image analysis through manual post-processing.200
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3.3 Particle size

As summarized by Wu and McFarquhar (2016), the size of ice crystals is described in a variety of different ways throughout

the literature, and an appropriate interpretation is required when comparing size data from different sources. For analysis of

the microscope images in this study with the goal of determining particle size, the diameter Dsec of the smallest enclosing

circle around the detected crystal contour, and the area equivalent diameter Dae were determined and used for deriving the205

m(D) relationships. For the velocity measurements, the recorded particle images in the described holography setup are 2D

projections of the crystals during their fall. The length of the major axis of an ellipse fitted to the particle’s contour, Dmaj , was

used as the parameter representing particle size.

4 Results and discussion

Ice crystal properties were determined by analyzing the images and holograms obtained in a total of 18 experiments conducted210

in the ICC. In order to produce ice crystals of different habits, the conditions within the chamber during particle growth

were varied between experimental runs. The chamber temperature was set to values between -8 and −16 ◦ and monitored

continuously with a thermocouple sensor. Additionally, ice crystal growth is determined by the available water vapor inside of

the ICC, which could be influenced indirectly by adjusting the rate and duration of droplet supply into the chamber volume.

4.1 Cloud characterization215

In order to characterize the thermodynamic conditions of the ICC during typical measurement conditions, the liquid water

content (LWC) of the chamber air was determined. For this, the dew point temperature Td,dry of chamber air was determined

before an experiment cycle (dry conditions) by sampling chamber air isokinetically into a dew point hygrometer (MBW Cal-

ibration Ltd., Wettingen, Switzerland, DP3-D/SH) placed outside the cold room. Afterwards, a cloud of liquid droplets was

generated as usual for an experimental run, and chamber air containing droplets was sampled and lead to the hygrometer. In220

order to evaporate the droplets within the sampled air, the walls of the tube from the chamber towards the hygrometer were

heated, inducing an increase in temperature within the tube itself. As relative humidity was thus reduced below saturation, the

droplets flowing through the tube evaporated before the sampled air mass reached the dew point hygrometer. The increase in

absolute humidity ∆q within the chamber between dry and cloud-filled conditions is given in Table 2, and it was determined

from the measured dew point temperatures and saturation vapor pressures:225

LWC = ∆q =
es,cloud

RvTd,cloud
− es,dry

RvTd,dry
, (8)

where es,cloud, es,dry, Tcloud and Tdry are the saturation vapor pressures and temperatures during cloud and dry conditions and

Rv = 461.4 J kg−1 K−1 is the individual gas constant for water vapor. The saturation vapor pressures were determined using

the Magnus approximation to the Clausius-Clapeyron equation (Alduchov and Eskridge, 1996). The increase in dew point

temperature of 7.5 K (see Tab. 2) corresponds to a LWC of 1.61±0.22 gm−3 within the ICC during typical cloud conditions230

before nucleation was triggered. This value is similar to observations within typical atmospheric cumulus clouds (Bower and
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Choularton, 1988). In a separate experiment using the holography setup described in Sect. 4.3, the droplet size distribution in

the fully-formed cloud was determined to have its mode at about 10 µm. When combining the determined mean droplet size

and LWC, the number concentration of droplets within the ICC cloud can be calculated to be approximately 2500 cm−3.

4.2 Mass measurements235

A total of 1207 pairs of ice crystals and melted droplets were obtained from microscope imaging and the melting technique,

with crystal area equivalent diameters between 15 and 145 µm. The majority of ice crystals (≈ 68%) showed irregular crystal

growth, with complex angular shapes being more frequent than rounded shapes. For pristine crystals, a dependence of growth

habit on the thermodynamic conditions was observed. The most frequent pristine shape was columns (≈ 20%), followed by

aggregates of pristine and irregular crystals (≈ 7%), and dendrites (≈ 4%). Capped columns, bullet rosettes, and plate crystals240

were all observed with a fraction of 1% or less.

Figure 5 shows the mass of ice crystals as a function of their size. The blue crosses are data points of the area-equivalent

diameter Dae of crystals obtained from the experiments described in Sect. 3, with the blue solid line representing the best

power law fit to this data. The solid orange line represents the best fit to data obtained from the experiments in the present study

if crystal size is interpreted as the diameter of the smallest enclosing circle around the crystal contour determined by automated245

object detection (Dsec). Also added are power law relationships of Cotton et al. (2013), Mitchell et al. (2010), Mitchell et al.

(1990), Heymsfield et al. (2010) and Brown and Francis (1995) for comparison. It can be seen that the ice particle masses

predicted by most of the parameterizations from the literature are higher than those observed in the present study. An exception

is the relation given by Mitchell et al. (2010), which shows good agreement with our parameterizations up to around 100 µm.

4.3 Sedimentation velocity measurements250

In Fig. 6, the measurements of ice crystal sedimentation velocity and size are shown for eight experiments conducted in the

ICC. Following the varying thermodynamical conditions, different distributions of observed crystal habits were present during

each experiment. As expected, a large spread was found in the observed fall velocities, which ranged from a few mm s−1 to

120 mm s−1.

Td [K] es [hPa] q [gm−3]

Dry conditions 262.0±0.5 2.66±0.11 2.20±0.08

Cloud conditions 269.5±0.5 4.73±0.18 3.81±0.14

Table 2. Dew point temperature and deduced humidity measures for liquid water content measurements. The increase in dew point tempera-

ture was caused by the evaporation of droplets on their way from the ICC to the dew point hygrometer. es was calculated from the Magnus

approximation to the Clausius-Clapeyron equation, q from Eq. (8).
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Figure 5. Ice crystal mass as a function of maximum dimension from the present ICC experiments (N = 1207, Dae in blue, best fit as solid

blue line; Dsec best fit as orange solid line). Parameterizations from literature are plotted by dashed lines. The green dash-dotted line shows

the mass of a spherical object with density ρice = 0.9184 kg m−3

.

The hydrodynamic diameter of the falling crystals, which serves as a good descriptor of the hydrodynamic properties of a255

falling object, can be calculated from Eq. (7):

Dhyd =
g

3πη
m

v
. (9)

IfDhyd <Dmax, the observed falling object has a ratio betweenm and v that is smaller than that of a sphere of diameterDmax.

In Fig. 7, Dhyd is shown as a function of Dmaj for all crystals observed in the fall track experiments. Dhyd/Dmaj < 1 for
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crystals with Dmaj <100 µm, increasing with Dmaj and crossing the value of 1 (Dhyd =Dmaj) at around Dmaj = 100 µm.260

Crystal habit and size show good correlation, as most crystals with Dmaj <70 µm have grown with a columnar or irregular

habit, and larger crystals were mostly dendritic or aggregated. Nevertheless, no distinct dependence of the ratio Dhyd/Dmaj

on habit can be observed as seen in Fig. 8). The difference between the mean ratios Dhyd/Dmaj observed in each of the other

habits is smaller than the standard deviation of Dhyd/Dmaj within each habit class (represented by error bars). The small

mean ratio for capped columns is an artifact of the small sample size of this particular habit. The relationship between Dhyd265

and Dmax for crystals of all observed sizes and shapes follows the power law Dhyd = 0.039D1.69
max.

Additionally, a separate analysis of columnar crystals has been conducted to complement the investigation where all crystals

of different habits were combined. Columns were chosen due to their abundance in the experiments (over 20% of all observed

crystals) and their symmetric shape, which allows for an appropriate estimation of their projected area during fall. The Best

numbers X (see Eq. (5)) of the observed columns ranges between 10−1 and 10 (see Fig. 9), with Reynolds numbers (see Eq.270

(4)) between 0.05 and 0.5. The mean aspect ratio (AR) of columns investigated in this work was 0.49. The data fit (orange line,

with its uncertainty as gray shading) is enveloped by both curves from Jayaweera and Cottis (1969), who determined X and

Re for metal cylinders with two different aspect ratios falling in motor oil. The power law relationship suggested by Bürgesser

et al. (2016) generally predicts significantly higher Best numbers than we observed for a given Reynolds number.

For low Reynolds numbers (Re� 1), both theoretical models and experimental studies suggest that the orientations of275

falling columns are randomly distributed (Westbrook, 2007; Bürgesser et al., 2016). The same behavior can be seen in the

distribution of orientations of the falling columnar crystals in our study, which do not show any preferred alignment of crystals

to the fall direction (see Fig. 10).

4.4 Fall streak measurements

The velocity range measured using particle streaks during the validation experiment was similar to the range prevalent in the280

holographic measurements, with a mode in the velocity distribution around vsed = 40 mm/s for both techniques. To further

characterize the fall behavior of crystals in the fall section, the spatial distribution of fall streak center points detected in each

part of the sample volume during the validation experiment is shown in Fig. 11b. Streaks could be observed throughout the

entire field of view of the camera. Nevertheless, the image edges were slightly less populated, which is a result of the filtering of

incomplete fall streaks extending outside of the field of view. Figure 11c shows the evolution of the mean particle fall velocity285

over time for the fall streak experiment. The dashed lines show the moving average of the fall speeds’ standard deviation in

each image. The highest mean velocities were detected in the early phase of the experiment, as the fastest crystals arrived in the

sample volume first. After around 10 s, the velocity reached a steady level. In this phase, a mix of crystals with high and low

fall velocities was present in each layer of the chamber due to the constant resupply of newly formed crystals. From this point

on, a slow decline of the mean fall velocity was observed because the crystals remaining in the section slowly sedimented out.290

Figure 12 shows the distribution of velocities from a set of streak measurements (top panel) and the size distribution of ice

crystals measured under the microscope afterwards. A similar general shape can be observed, with a steep increase from low

values to a mode in an intermediate region (15 mm/s for w, 30 µm forDae) and a longer tail towards higher values. The bottom
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panel shows the histogram of sedimentation velocities calculated from Dae following Stokes theory (Eq. (7)) for each crystal,

using the m(D) power law determined in subsection 4.2 for mass calculation (a= 0.4972, b= 2.36). While the general shapes295

of the distributions are roughly similar, the mode of observed velocities (top panel) is found at slightly lower velocity values

than the one in the distribution predicted by Stokes theory. This implies that the observed crystals are subjected to a stronger

drag force than a spherical object with diameter Dae falling in the Stokes regime.

5 Conclusions

During experiments conducted in the ice cloud chamber of the Mainz vertical wind tunnel laboratory, in-focus images of300

small ice crystals with sizes between 25 and 220 µm during their sedimentation in a calm environment from reconstructed

holograms were produced. From these images, sedimentation velocities of over 3500 particles have been obtained by particle

tracking. After classifying the crystals based on their habits, a relationship between hydrodynamic and maximum diameter

was calculated. A separate analysis was conducted for columnar crystals, which were the most frequently observed crystals of

regular shape. The relationship between Best and Reynolds numbers that was determined for columnar crystals agreed well with305

the parameterization from Jayaweera and Cottis (1969). The mass of 1207 crystals was determined by collecting the crystals

on a glass slide and measuring their size before and after melting. A parameterization relating particle mass and maximum

dimension was calculated, which describes the properties of ice crystals in the investigated size range more accurately than

similar relationships found in the literature.

The analysis methods used for determining the particle properties were almost entirely automated requiring minimal oper-310

ator interaction, owing to the capabilities of modern computer vision and machine learning algorithms. The accuracy of data

obtained through these automated processes was validated through comparison to operator-labeled samples. The automation

accelerated the acquisition and analysis of new data.

Sensitivity studies on the effect of the proposed mass parameterizations on atmospheric models should be conducted in order

to evaluate their impact on the formation and persistence of clouds containing small ice crystals, because the processes involved315

include too many complex feedback mechanisms to allow for an immediate, general conclusion. Conducting such sensitivity

studies is suggested here, as our literature search did not reveal any assessments investigating the subject.
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Figure 6. Sedimentation velocity (vsed, in mm/s) and size (Dmaj in µm) measurements from holography particle tracking experiments

(particle numbers in each experiment are annotated).

.
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Figure 7. Relation between the hydrodynamic diameter Dhyd calculated using Eq. (7) and the measured maximum dimension Dmax of

falling crystals. Different crystal habits (classified by the trained predictor) are marked as different symbols and colors. Power law fit as

green line, Dhyd = 0.039D0.69
maj . The blue line represents Dhyd =Dmax.

Figure 8. Mean value of Dhyd/Dmaj for each crystal habit for data shown in Fig. 7.

20

https://doi.org/10.5194/acp-2020-339
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 9. (a): Best number as function of Reynolds numbers for investigated falling columnar crystals, N = 1844. Data fit added in orange

with error range as gray shading. Parameterization from Jayaweera and Cottis (1969) in magenta and orange, from Bürgesser et al. (2016) in

green. (b): Aspect ratio histogram of investigated columnar crystals, mean aspect ratio AR= 0.49.
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Figure 10. Histogram of the falling columnar crystals’ orientation Θ, with 90 ◦ corresponding to a fall with the major axis normal to the

falling direction. N = 1844.
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Figure 11. (a): Example fall streak image. Detected streaks are circled in red, diameter is equal to the detected streak length. (b): Relative

occurrence of crystals in partial regions of the sample volume, number of streak center points observed in pixel region divided by number of

streaks in the full image. Total number of streaks in experiment: N = 24775. (c): Mean velocity of all falling objects in the sample volume

over time. A moving average over 2 seconds was used to smooth the time series. The dashed lines show the moving average of the fall

speeds’ standard deviation in each image.
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Figure 12. Distribution of different parameters for fall streak experiment. (a): crystal fall velocities extracted from streak images. (b): area-

equivalent diameter (Dae) from microscope images of collected crystals. (c): fall velocity predicted from Dae size distribution using Stokes

theory (Eq. (7)).
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